Minimal paths in the commuting graphs of semigroups
نویسندگان
چکیده
Let S be a finite non-commutative semigroup. The commuting graph of S, denoted G(S), is the graph whose vertices are the non-central elements of S and whose edges are the sets {a, b} of vertices such that a 6= b and ab = ba. Denote by T (X) the semigroup of full transformations on a finite set X. Let J be any ideal of T (X) such that J is different from the ideal of constant transformations on X. We prove that if |X| ≥ 4, then, with a few exceptions, the diameter of G(J) is 5. On the other hand, we prove that for every positive integer n, there exists a semigroup S such that the diameter of G(S) is n. We also study the left paths in G(S), that is, paths a1− a2− · · ·− am such that a1 6= am and a1ai = amai for all i ∈ {1, . . . ,m}. We prove that for every positive integer n ≥ 2, except n = 3, there exists a semigroup whose shortest left path has length n. As a corollary, we use the previous results to solve a purely algebraic old problem posed by B.M. Schein. 2010 Mathematics Subject Classification. 05C25, 05C12, 20M20.
منابع مشابه
A NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملRelative n-th non-commuting graphs of finite groups
Suppose $n$ is a fixed positive integer. We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$, associated to the non-abelian subgroup $H$ of group $G$. The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$. Moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملE0-dilation of strongly commuting CP0-semigroups
We prove that every strongly commuting pair of CP0-semigroups has a minimal E0-dilation. This is achieved in two major steps, interesting in themselves: 1: we show that a strongly commuting pair of CP0semigroups can be represented via a two parameter product system representation; 2: we prove that every fully coisometric product system representation has a fully coisometric, isometric dilation....
متن کاملOn the Graphs Related to Green Relations of Finite Semigroups
In this paper we develop an analog of the notion of the con- jugacy graph of nite groups for the nite semigroups by considering the Green relations of a nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a nite semigroup S , we first atte...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 32 شماره
صفحات -
تاریخ انتشار 2011